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Complex numbers and functions are widely used in systems engineering. While all “real world”
signals are real valued, we will see that even real-valued signals have complex transforms when
the most common engineering conventions are used. In communication systems design and analy-
sis, real-valued signals centered around some carrier frequency are often modeled in terms of the
corresponding complex baseband equivalent signal – i.e., this complex signal is centered at zero
frequency, but captures all information about the original signal. Similar phasor and complex
impedance conventions are used in analyzing linear circuits. It is possible, in fact, to avoid us-
ing complex signals when treating only real-world, real-valued signals, but using complex signals
significantly compacts the notation and mathematical expressions and also makes certain symme-
tries more apparent. Thus, students in this class should be comfortable with the basic concepts of
complex numbers and functions as well as the mechanics of their manipulation.

Finally, while notational convenience is a major reason to adopt complex models, this conven-
tion is deeply ingrained in the field, both in academic references and engineering practice. For
example, most Digital Signal Processing (DSP) chips have native support for complex variables
and arithmetic.

1 Basic Definitions and Representations

An imaginary number is a real multiple of j =
√
−1. A complex number is the sum of a real and

imaginary number. For example, the complex number z may be expressed as

z = a+ jb (1)

where a and b are real numbers. Complex numbers therefore include both (purely) real and (purely)
imaginary numbers as a special case (e.g., b = 0 and a = 0, respectively). It is useful to view a
complex number in the complex plane defined by an abscissa (“x-axis”) corresponding to the real
line and an ordinate (“y-axis”) corresponding to the imaginary axis. Thus, the complex number z
in (1) is viewed as a point at (a, b) in the complex plane.

The (complex) conjugate of a complex number z, denoted z∗, is defined as

z∗ = a− jb (2)

where z is the complex number in (1). Another common notation for the conjugate is z̄. Fig. 1
shows how z and z∗ are related in the complex plane.
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Figure 1: Geometric interpretation of z and z∗.
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The real part of the complex number z in (1) is a and the imaginary part of z in (1) is b.
Note that both the real and imaginary parts of z are real numbers. The real-part and imaginary-
part operators take a complex number and return the corresponding real and imaginary parts,
respectively. It is straightforward to show that these operators are defined as

<{z} =
z + z∗

2
(3a)

={z} =
z − z∗

2j
(3b)

Since a complex number z can be viewed as a point in a plane, it can also be expressed in polar
coordinates. In other words, the complex number in (1) can also be expressed as

z = rejθ (4)

where r is a real, non-negative number and θ is a real number.1 The geometrical interpretation
of r and θ are given in (1) as well. Specifically, r is the length from the origin and θ is the angle
from the real axis. In terms of the complex number z, r is written as |z| and referred to as the
magnitude of z. Similarly, θ is written as ∠z and referred to as the angle or argument of z. Thus,
any complex number can be written as

z = |z|ej∠z = <{z}+ j={z} (5)

The magnitude of any complex number can be obtained by

|z|2 = zz∗ = (<{z})2 + (={z})2 (6)

The angle can be identified via

ej∠z =
z

|z| (7)

Conversion from Cartesian to magnitude-phase is performed via a standard rectangular-to-polar
transformation

|z| =
√

(<{z})2 + (={z})2 (8)

∠z = tan−1(={z}/<{z}) (9)

The reverse conversion rule is

<{z} = |z| cos∠z (10a)

={z} = |z| sin∠z (10b)

For example, consider z = −4 + 4j. This complex number has

<{z} = −4 (11)

={z} = +4 (12)

|z| = 4
√

2 (13)

∠z = 3π/4 (14)

1It will be come clear that θ is only unique on an interval of length 2π, so one may consider the restriction that
θ ∈ [0, 2π).
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1.1 Useful Identities and Properties

All manipulations of complex number follow from the basic definitions above, but it is worth listing
a few of the common identities used as below (the reader is encouraged to prove each of these). In
each case, w and z are complex numbers and a is a real constant.

(wz)∗ = w∗z∗ (15a)

|wz| = |w||z| (15b)

1

z
=

1

|z|e
−j∠z (15c)

|z ± w|2 = |z|2 + |w|2 ± 2<{wz∗} (15d)

= |z|2 + |w|2 ± 2|w||z| cos(∠w − ∠z) (15e)

<{az} = a<{z} (15f)

={az} = a={z} (15g)

|az| = |a||z| (15h)

∠(az) = ∠z +
π

2
(1− sgn(a)) (15i)

where sgn(a) is +1 if a ≥ 0 and −1 if a < 0 – note that this simply adds π to the angle if a is
negative.

Unit magnitude complex numbers, which can be expressed as z = ejθ, are an important special
case of complex numbers. These unit magnitude complex numbers are all located on the unit circle,
with angle to the real axis given by θ. A special case of the relations in (3) and (10) yields

<
{
ejθ
}

= cos θ =
ejθ + e−jθ

2
(16a)

=
{
ejθ
}

= sin θ =
ejθ − e−jθ

2j
(16b)

ejθ = cos θ + j sin θ (16c)

The equation in (16c) is referred to as Euler’s equation.

2 Complex Exponentials

A complex signal (or function), z(t), is a signal that takes on complex values at a given time. Thus,
for each value of t, the quantities <{z(t)}, ={z(t)}, |z(t)|, and ∠z(t) are defined. Alternatively,
thinking of t as varying, these can be seen as real-valued functions derived from the complex
function z(t). Complex functions of various sorts will be encountered in EE 301, but a particularly
important type of complex signal is the complex exponential, which is reviewed in detail below.

2.1 Continuous Time Complex Exponentials

Consider the complex exponential signal

z(t) = Cest (17)
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where t is a real number and s and C are complex constants. In order to observe the qualitative
behavior of this signal for various C and s, it is useful to express s in Cartesian coordinates as
s = σ + jω and C in mag-phase format so that

z(t) = |C|ej∠Ce(σ+jω)t (18a)

= |C|eσtej(ωt+∠C) (18b)

= |C|eσt [cos(ωt+ ∠C) + j sin(ωt+ ∠C)] (18c)

It is helpful to consider different special cases of this signal to gain intuition on the general form
above. First, consider the case of C = 1 and ω = 0 so that

z(t) = eσt (19)

This signal decays to right (i.e., as t increases) if σ < 0. If σ > 0, then it decays to the left. In
both cases, the signal diverges in the opposite direction of the decay. Also, note that the rate of
decay increases as |σ| increases.

Next consider the case of σ = 0 and C = 1 so that

z(t) = ejωt = cosωt+ j sinωt (20)

Thus, for this special case, the complex exponential oscillates at a frequency of ω rad/sec in a
sinusoidal fashion in both real and imaginary parts.

This signal plays an important role in Fourier analysis, so it deserves a closer look. At any
time t, z(t) is a point on the unit circle in the complex plane and the expression in (20) is just
that of (16c) with θ = ωt. Assuming ω > 0, this point moves counter-clockwise around the unit
circle as t increases. This concept is illustrated in Fig. 2. Note that for ω < 0, the rotation is
clockwise. The signal in (20) is at the point (1, 0) in the complex plane when t = 0. It takes
T0 = 2π/ω seconds to make one cycle around the unit circle. Thus, the linear frequency of this
signal is f = 1/T0 = ω/(2π) cycles/sec, or Hertz (Hz). An equivalent measure of frequency is given
by ω itself which measures the angular distance traveled per sec. Thus, ω is the angular frequency
in rad/sec. Angular frequency is commonly used in the signal processing literature while linear
frequency is often adopted in the communications field. Thus, the larger ω = |= {s}|, the faster
the oscillation.

When both σ and ω are nonzero, a combination of oscillation at frequency ω with exponential
decay at rate σ is observed as can be seen in (18c). The multiplication by a complex constant C
results in an amplitude gain by |C| and a phase shift by ∠C. Fig. 3 summarizes the behavior of
the general complex exponential by indicating the regions in the complex plane where the values
of s result in qualitatively different signal behavior.

2.2 Discrete Time Complex Exponentials

A discrete time complex exponential can also be defined as w[n] = Cesn, where C and s are complex
constants. The convention in discrete time, however, is to consider es as another complex constant
(i.e., z = es) so that

w[n] = Czn (21)
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Figure 2: The signal ejωt spins counterclockwise around the unit circle at speed ω > 0 rad/sec.
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Figure 3: The qualitative behavior for the signal est varies as s moves in the complex plane.
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is a general complex, discrete time, exponential. In this case it is helpful to express both C and
z in magnitude phase format to determine the behavior of the signal for various values of these
constants. Specifically, let z = rejΩ so that

w[n] = |C|ej∠C
(
rejΩ

)n
(22a)

= |C|rnej(Ωn+∠C) (22b)

= |C|rn [cos(Ωn+ ∠C) + j sin(Ωn+ ∠C)] (22c)

Again, it is useful to consider special cases to gain intuition about the behavior of the general
complex exponential. First, consider the case of C = 1 and Ω = 0 so that w[n] = rn where
r = |z| ≥ 0. Note that for 0 < r < 1, this signal decays exponentially to the right and for r > 1,
it decays exponentially to the left. As r approaches 1 from either the left or the right, the rate of
this decay decreases and for r = 1, the signal is a constant that does not decay.

Next consider the case of Ω = π and C = 1 so that

w[n] = rn cos(πn) = (−1)nrn = (−r)n (23)

This signal has behavior similar to the signal of Ω = 0, except the sign of the signal alternates at
each sample time. Specifically, for 0 < r < 1 (i.e., −1 < z < 0), this signal decays exponentially
to the right and for r > 1 (i.e., −z < −1), it decays exponentially to the left, alternating signs in
each case.

Next consider the case of C = 1 and r = 1, so that

w[n] = ejΩn = cos Ωn+ j sin Ωn (24)

which is analogous to the continuous time signal in (20). Since n only takes integer values, the
angle of w[n] increments by Ω at each sample time. For example, if Ω = π/4, then the angle
will be 0 at n = 0, π/4 at n = 1, π/2 for n = 2, etc. Note that Ω is therefore a measure of
speed of angular rotation in radians/sample. In fact, Ω is called normalized angular frequency
or discrete time angular frequency and has units of rad/sample, often shortened to radians. As
in continuous time, one may also consider a linear frequency variable that measures the fraction
of a cycle incremented at each sample. Specifically, define ν = Ω/(2π) as the normalized linear
frequency with units of cycles/sample (often referred to as unit-less).

Discrete time frequency differs dramatically from continuous time frequency. One important
difference is that while continuous time frequency is unique for any real ω, discrete time frequency
is only unique for Ω on an interval of length 2π. This is because

ej(Ω+2π)n = ejΩnej2πn = ejΩn (25)

so that the frequencies Ω and Ω + k(2π) are the same in discrete time. This means, for example,
that Ω = 9π/4 is equivalent to Ω = π/4. Consider w[n] = e(9π/4)n. For n = 0, this has angle 0.
For n = 1 it has angle 9π/4 which is equivalent to π/4. Incrementing n by one causes an increase
of 2π + π/4 in the angle which is equivalent to an increment of π/4. One may imagine that for
Ω = 9π/4, the signal makes an “extra lap” around the unit circle between sample times, but the
net effect is the same for the discrete time signal value. This concept is illustrated in Fig. 4, where
cos((9π/4)t) and cos((π/4)t) are plotted versus the continuous variable t and the values for integer
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Figure 4: Normalized frequency Ω is unique only an interval of length 2π (e.g., [−π,+π) because
of this aliasing effect.

values of t = n have been noted to be the same. This concept foreshadows aliasing or the strobe-
light effect where a higher frequency appears as a lower frequency when sampled at a specific rate.2

Another consequence of this is that the highest normalized frequency is Ω = π, which is the case of
alternating signs at each sample. For example, Ω = 5π/4 is equivalent to Ω = −3π/4 and results
in a slower rate of oscillation than Ω = π.

Another difference between the continuous time signal z(t) = ejωt and the discrete time signal
w[n] = ejΩn is that the former is periodic for any choice of ω, but the latter is not period for every
Ω. Specifically, z(t+ T0) = z(t) where T0 = 2π/ω is the period (i.e., the time required to complete
one cycle of the unit circle). The condition for w[n] to be periodic is

w[n] = ejΩn = w[n+N0] = ejΩ(n+N0) = ejΩnejΩN0 (26)

which requires
ejΩN0 = 1 (27)

or, equivalently, ΩN0 = m(2π) for some integer m. It follows that w[n] = ejΩn is periodic if and
only if Ω is a rational multiple of 2π. For example, Ω = π/4 yields a period of N0 = 8 while Ω = 1

2This is also referred to as the “wagon-wheel effect” from the observation in old western movies of the wagon
wheel slowing or stopping on the film even as the wagon speeds along. This is because the film is taking a fixed
number of pictures per second and only catches the position of the wheel at those instants. For example, if the speed
of the wheel is just right, the wheel position can be the same at each snapshot giving the illusions of a stationary
wheel even though it is spinning quite rapidly in reality.
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Figure 5: The qualitative behavior for the signal zn varies as z moves in the complex plane.

results in an aperiodic signal. This may seem intuitively odd, but the explanation is that as the
phase of the signal is incremented around the unit circle, the signal laps the unit circle again an
again, but never lands on the same point twice. For example, with Ω = 1, the point ej only occurs
at n = 1 and is never revisited.

Finally, the general case of the complex exponential in (22) is a mixture of oscillation and
exponential decay. If the value of z lies within the unit circle, the signal will decay to the right
while it decays to the left of |z| > 1. The frequency of oscillation is Ω = ∠z with the special cases
of Ω = 0 and Ω = π considered above. The rate of exponential decay is faster as the value of z
becomes further from the unit circle and when z is on the unit circle, no decay occurs – the signal
oscillates forever at frequency Ω = ∠z. This behavior is summarized in Fig. 5. Note that the same
behaviors occur in both Figs. 3 and 5, but the regions differ due to the different convention for
defining exponential signals in continuous and discrete time.

2.3 Symmetry Measures for Signals

It is useful to characterize odd and even signals, defined as follows

z(t) = z(−t) Even Function (28a)

z(t) = −z(−t) Odd Function (28b)

Prototypical examples of even and odd functions are cosines and sines, respectively. In general,
functions may be neither even nor odd, but it is often useful to exploit the even or odd properties
of signals, for example, to simplify integrals. For example, the integral of an odd function over a
symmetric interval around the origin is zero.

Much like the real and imaginary operators, it is useful to define operators to find the even and
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odd parts of a given signal. These operators are defined by

EV {z(t)} =
z(t) + z(−t)

2
(29a)

ODD {z(t)} =
z(t)− z(−t)

2
(29b)

Note that this provides an even-odd decomposition of an arbitrary signal

z(t) = EV {z(t)}+ ODD {z(t)} (30)

Also note that the even part of any even function is that function itself and the even part of an
odd function is zero with similar properties holding for the odd part operator.

The concepts of even and odd are meaningful for complex signals but most useful for real signals.
An analogous property for complex signals is Hermitian Symmetry3 defined by

z(t) = z∗(−t) Hermitian Symmetric (HS) Function (31a)

z(t) = −z∗(−t) Hermitian Anti-Symmetric (HAS) Function (31b)

The HS and HAS part operators can therefore be defined as

HS {z(t)} =
z(t) + z∗(−t)

2
(32a)

HAS {z(t)} =
z(t)− z∗(−t)

2
(32b)

Note that this provides an HS-HAS decomposition of an arbitrary signal

z(t) = HS {z(t)}+ HAS {z(t)} (33)

Also note that the HS-part of a HS signal is that signal itself and the HS-part of a HAS function
is zero.

Hermitian symmetry is a compact way of capturing symmetry properties of complex signals.
For example, we shall see that when a real time domain signal is viewed in the frequency domain,
it is Hermitian Symmetric.

3 Exercises

1. Express z = 4 + j2 is magnitude-phase form. Show z, z∗, 1/z and 1/z∗ in the complex plane.

2. Express z = 1
2e

−jπ/3 in Cartesian coordinates. Show z, z∗, 1/z and 1/z∗ in the complex
plane.

3. Simplify
√
j.

4. Consider the quantity ej
2π
N
kn for k and n both taking values in {0, 1, 2, . . . N − 1}.

(a) Show that ej
2π
N
kn = ej

2π
N

(kn)modN where (kn)modN is kn modulo N .

3Also referred to as conjugate symmetry.
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(b) For N = 6 how many distinct values of ej
2π
N
kn are there? Make a table of the 36 entries

for all k and n and enter the simplified value of ej
2π
N
kn.

5. Simplify and plot <
{

(2 + j)e(−4+3j)t/(1− j)
}

.

6. Verify equations (30) and (33) hold in general.

7. Show that if z(t) is even, then ∫ +T

−T
z(t)dt = 2

∫ T

0
z(t)dt

8. Show that for z(t) odd, ∫ +T

−T
z(t)dt = 0

9. Suppose x(t) is even and y(t) is odd. Find the even and odd parts of z(t) = x(t)y(t) and

simplify
∫ +T
−T z(t)dt.

10. Show that z(t) is HS if and only if |z(t)| is even and ∠z(t) is odd.

11. Show that z(t) is HS if and only if <{z(t)} is even and ={z(t)} is odd.

12. If a signal is real and HS, what can be said about it?

13. If a signal is imaginary and HS, what can be said about it?

14. Consider the following function

g(Ω) =
1

1 + (1/2)e−jΩ

(a) Is this function HS? Is it HAS?

(b) Find |g(Ω)|2

(c) Find ∠g(Ω)

15. Consider the following function

g(Ω) =
1

1 + (1/2)(1 + j)e−jΩ

(a) Is this function HS? Is it HAS?

(b) Find |g(Ω)|2

(c) Find ∠g(Ω)

16. Consider the following function

g(ω) =
1

10 + jω

(a) Is this function HS? Is it HAS?
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(b) Find |g(ω)|2

(c) Find ∠g(ω)

17. Consider the following function

g(ω) =
1

(10− 10j) + jω

(a) Is this function HS? Is it HAS?

(b) Find |g(ω)|2

(c) Find ∠g(ω)

18. Find the HS and HAS parts of z(t) = ejωt.


