# **Pipelining in Engineering**

ENGR 102

Keith M. Chugg Fall 2015



## Overview

- Explore the concept of pipelining through an example
  - Group reading
- Some reality checks
  - Refining our models
  - Limitations of pipeling
- Characterizing general pipelining approaches

# Group Reading

- 4-page article
- 5 students in the class
- Each student can read I page/minute
- How long does it take for everybody to ready the article?

T = O





T = I

























|  | - 1 |  |
|--|-----|--|
|  | - 1 |  |
|  | - 1 |  |
|  | - 1 |  |
|  | - 1 |  |
|  | - 1 |  |
|  |     |  |
|  | _   |  |





student l

student 2

student 3

student 4

student 5









student I

student 2

student 4

student 5





student l

student 2



ent 3





student 5



















student l

student 2

student 3

student 4

student 5















student l

student 2

student 3

student 4





T = 10











student l

student 2

student 3

student 4

student 5















student I

student 2

student 3

student 4















student l

student 2

student 3

student 4















student I

student 2

st

student 3

student 4

student 5



T = 13











student l

student 2

student 3

student 4

student 5



20

© Keith M. Chugg, 2015











student l

student 2

st

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5













student l

student 2

student 3

student 4

student 5







student 2

student 3

student 4

student 5

- 20 time units to complete (mins)
- Each student requires 4 time units to complete
- Time between one student and the next finishing is 4 time units (mins)



# How to speed this up?

- What is slowing us down?
- Distinct methods/concepts:
  - Parallelism
  - Division of labor (job partitioning)
  - Pipelining





T = I

































student I

student 2

student 3

student 4

student 5














student I

student 2

student 3

student 4















student l

student 2

student 3

student 4

student 5











student I

student 2

student 3

student 4

student 5











student l

student 2

student 3

student 4

student 5



T = 8

\_\_\_\_\_







student I

student 2

student 3

student 4

student 5



T = 9











student 5

student l

student 2

student 3

student 4













student I

student 2

student 3

student 4

student 5



![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_6.jpeg)

student 5

student l

student 2

student 3

student 4

![](_page_43_Picture_12.jpeg)

T = II

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_3.jpeg)

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_6.jpeg)

student 5

student l

student 2

student 3

student 4

![](_page_44_Picture_12.jpeg)

T = II

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)

student l

student 2

student 3

student 4

student 5

![](_page_45_Picture_12.jpeg)

![](_page_46_Picture_2.jpeg)

- 12 time units to complete (mins)
- Each student requires 4 time units to complete
- Time between one student and the next finishing is 2 time units (mins)

![](_page_46_Picture_6.jpeg)

#### in words...

- <u>S1 reads p1&2.</u>
- S1 passes p1&2 to S2.
- <u>S1 reads p3&4, concurrently, S2 reads p1&2.</u>
- S1 passes p3&4 to S2, concurrently, S2 passes p1&2 to S3.
- <u>S2 reads p3&4, S3 reads p1&2.</u>
- S2 passes p3&4 to S3, S3 passes p1&2 to S4.
- <u>S3 reads p3&4, S4 reads p1&2.</u>
- S3 passes p3&4 to S4, S4 passes p1&2 to S5.
- <u>S4 reads p3&4, S5 reads p1&2.</u>
- S4 passes p3&4 to S5.
- <u>S5 reads p3&4.</u>

Figure 1: A step-by-step description of how five students (S1, S2, S3, S4, S5) read a four-page article partitioned into two 2-page parts (p1&2, p3&4) in a pipelined fashion.

### How to speed this up?

• More of a good thing?

![](_page_49_Figure_2.jpeg)

![](_page_49_Picture_3.jpeg)

T = I

![](_page_50_Figure_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_52_Picture_3.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_53_Picture_3.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

![](_page_54_Picture_3.jpeg)

T = 4

![](_page_55_Figure_2.jpeg)

![](_page_55_Picture_3.jpeg)

![](_page_55_Picture_4.jpeg)

![](_page_55_Picture_5.jpeg)

![](_page_55_Picture_6.jpeg)

student I

student 2

student 3

student 4

student 5

![](_page_55_Picture_12.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_57_Picture_3.jpeg)

![](_page_57_Picture_4.jpeg)

![](_page_57_Picture_5.jpeg)

student l

student 2

student 3

student 4

student 5

![](_page_57_Picture_11.jpeg)

![](_page_58_Figure_1.jpeg)

![](_page_58_Picture_2.jpeg)

![](_page_59_Figure_2.jpeg)

![](_page_59_Picture_3.jpeg)

![](_page_59_Picture_4.jpeg)

![](_page_59_Picture_5.jpeg)

student 5

student I

student 2

student 3

student 4

![](_page_59_Picture_11.jpeg)

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

![](_page_60_Picture_4.jpeg)

![](_page_60_Picture_5.jpeg)

![](_page_60_Picture_6.jpeg)

student l

student 2

student 3

student 4

student 5

![](_page_60_Picture_12.jpeg)

![](_page_61_Figure_1.jpeg)

T = 7

![](_page_61_Picture_2.jpeg)

student 5

![](_page_61_Picture_4.jpeg)

#### 62

student I student 2 student 3 student 4 s

![](_page_62_Picture_2.jpeg)

student 5

![](_page_62_Picture_4.jpeg)

student I student 2 student 3 student 4 st

![](_page_63_Picture_2.jpeg)

student 5

![](_page_63_Picture_4.jpeg)

![](_page_64_Figure_1.jpeg)

- 8 time units to complete (mins)
- Each student requires 4 time units to complete
- Time between one student and the next finishing is 1 time units (mins)

![](_page_64_Picture_5.jpeg)

#### in words...

• <u>S1 reads p1.</u>

• S1 passes p1 to S2.

- <u>S1 reads p2, concurrently, S2 reads p1.</u>
- S1 passes p2 to S2, concurrently, S2 passes p1 to S3.
- <u>S1 reads p3, S2 reads p2, S3 reads p1.</u>
- S1 passes p3 to S2, S2 passes p2 to S3, S3 passes p1 to S4.
- <u>S1 reads p4, S2 reads p3, S3 reads p2, S4 reads p1.</u>
- S1 passes p4 to S2, S2 passes p3 to S3, S3 passes p2 to S4, S4 passes p1 to S5.
- <u>S2 reads p4, S3 reads p3, S4 reads p2, S5 reads p1.</u>
- S2 passes p4 to S3, S3 passes p3 to S4, S4 passes p2 to S5.
- <u>S3 reads p4, S4 reads p3, S5 reads p2.</u>
- S3 passes p4 to S4, S4 passes p3 to S5.
- <u>S4 reads p4, S5 reads p3.</u>
- S4 passes p4 to S5.
- <u>S5 reads p4.</u>

Figure 3: A step-by-step description of how five students (S1, S2, S3, S4, S5) read a four page article that is partitioned into four 1-page parts (p1, p2, p3, p4) in a pipelined fashion.

#### Comparing these 3 Approaches

![](_page_66_Figure_1.jpeg)

Figure 2: Five students reading one copy of a four-page article at the rate of 1 page per minute. Each box with four squares, two squares, or one square shows a part of the article, and each × indicates the page being read by a student at the particular time indicated by the y-axis. This figure assumes that each passing step takes zero time. (a) Full article read and then passed (non-pipelined, baseline for comparison); (b) article divided into two 2-page parts, each part read and then passed (pipelined); (c) article divided into four 1-page parts, each part read and then passed (pipelined); (b). (For scenarios in (b) and (c), Figure 1 and Figure 3 respectively describe which part is being read by which student at what time.)

### How to speed this up?

• More of a good thing?

# How to speed this up?

![](_page_68_Figure_1.jpeg)

Figure 4: A comparison of total time for five students to finish reading a four page article, assuming each student reads one page per minute and that each passing step takes zero time, when the article is in one 4-

3

 Diminishing returns — less improvement as we go to smaller and smaller sections

# Examples of Pipelining

Student inputs

- A class reading a book
- Dishwashing: wash, dry, put-away
- Assembly lines
- Microprocessor instruction processing (steps)
- Streaming over multiple network hops (Netflix)
- Graduation ceremony tasks
- Bucket brigade
- Blaze pizza pizza ordering/production
- Optimized scheduling of workers/tasking a project or organization
  - supply chain management

# Examples of Pipelining

Table 1: Correspondence between the above three example scenarios.

|   | Students reading an                                 | Truck assembly line                                | Microprocessor processing                                           |
|---|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
|   | article                                             |                                                    | instructions                                                        |
| 1 | The article read by <u>one</u>                      | One truck's assembly                               | One instruction processed                                           |
|   | student                                             | completed                                          |                                                                     |
| 2 | Partitioning <u>an article</u> into k               | Partitioning the task of                           | Partitioning the task of processing                                 |
|   | parts                                               | assembling a truck into k                          | one instruction into k sub-tasks                                    |
|   |                                                     | assembly steps                                     |                                                                     |
| 3 | <u>A part of the article</u> read by                | A stage of the assembly line                       | A hardware module performs a sub-                                   |
|   | one student (P1, P2,)                               | works on one truck (A1, A2,                        | task for one instruction (M1, M2,)                                  |
|   |                                                     | )                                                  |                                                                     |
| 4 | $A_i$ : <i>i</i> <sup>th</sup> student completes    | $T_i$ : Assembly of $i^{\text{th}}$ truck          | $I_i$ : Processing of $i^{\text{th}}$ instruction                   |
|   | reading the article                                 | completed                                          | completed                                                           |
| 5 | $A_{ij}$ : <i>i</i> <sup>th</sup> student completes | $T_{ij}$ : $j^{\text{th}}$ step in the assembly of | $I_{ij:}$ j <sup>th</sup> sub-task in processing of i <sup>th</sup> |
|   | reading the $j^{\text{th}}$ part of the             | <i>i</i> <sup>th</sup> truck completed             | instruction completed                                               |
|   | article                                             |                                                    |                                                                     |

6

### Overview

- Explore the concept of pipelining through an example
  - Group reading
- Some reality checks
  - Refining our models
  - Limitations of pipelinings
- Characterizing general pipelining approaches
## Discussion: Limitations of Pipelining/Model

- What has our model neglected?
- What can go wrong or what are costs associated with this speed-up?

## Discussion: Limitations of Pipelining/Model Student inputs

- Assumed each student read at the speed
  - Limited by your slowest processing stage (e.g., slowest reader)
  - Single point of failure
- Need multiple processing resources
- Didn't count transition time (e.g., time to hand pages to neighbor)
- Cost of ripping the book into pieces
  - How to build a car in 20 stages? Break an instruction into many substeps?
- Coordination or time synchronization
- Cost to flush a long pipeline switching costs.

## Finite Transition Delay



Figure 5: Five students reading one copy of a four-page article at the rate of 1 page per minute, where each passing step has overhead of  $\delta = 1$  minute. Each box with four squares, two squares, or one square shows a part of the article, and each × indicates the page being read by a student at the particular time indicated by the y-axis. The empty boxes between reading steps are due to the 1 minute time overhead of each passing step. (a) Full article read and then passed (non-pipelined, baseline for comparison); (b) article divided into two two-page parts, each part read and then passed (pipelined); (c) article divided into four one-page parts, each part read and then passed (pipelined); the then (b)). (For scenarios in (b) and (c), Figure 1 and Figure 3 respectively describe which part is being read by which student at what time.)

## Throughput vs Latency

